千万级数据深分页查询SQL性能优化实践
Tech导读
分页查询在数据库中是一种很常见的应用场景,一般都可以使用limit语句快速实现。但是随着表数据的增长,limit查询性能也会越来越慢。
导读
分页查询在数据库中是一种很常见的应用场景,一般都可以使用limit语句快速实现。但是随着表数据的增长,limit查询性能也会越来越慢。01 系统介绍和问题描述
在今年的敏捷团队建设中,我通过Suite执行器实现了一键自动化单元测试。Juint除了Suite执行器还有哪些执行器呢?由此我的Runner探索之旅开始了!
如何在Mysql中实现上亿数据的遍历查询?先来介绍一下系统主角:关注系统,主要是维护京东用户和业务对象之前的关注关系;并对外提供各种关系查询,比如查询用户的关注商品或店铺列表,查询用户是否关注了某个商品或店铺等。但是最近接到了一个新需求,要求提供查询关注对象的粉丝列表接口功能。该功能的难点就是关注对象的粉丝数量过多,不少店铺的粉丝数量都是千万级别,并且有些大V粉丝数量能够达到上亿级别。而这些粉丝列表数据目前全都存储在Mysql库中,然后通过业务对象ID进行分库分表,所有的粉丝列表数据分布在16个分片的256张表中。同时为了方便查询粉丝列表,同一个业务对象的所有粉丝都会路由到同一张表中,每个表的数据量都能够达到 2 亿+。
02
解决问题的思路和方法
理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。
数据库表结构示例如下:
CREATE TABLE follow_fans_[0-255]
(
id bigint(11) NOT NULL AUTO_INCREMENT COMMENT '自增id',
biz_content VARCHAR(50) DEFAULT NULL COMMENT '业务对象ID',
source VARCHAR(50) DEFAULT NULL COMMENT '来源',
pin VARCHAR(50) DEFAULT NULL COMMENT '用户pin',
ext VARCHAR(5000) DEFAULT NULL COMMENT '扩展信息',
status TINYINT(2) DEFAULT 1 COMMENT '状态,0是失效,1是正常',
created_time DATETIME DEFAULT NULL COMMENT '创建时间',
modified_time DATETIME DEFAULT NULL COMMENT '修改时间',
PRIMARY KEY(id),
UNIQUE INDEX uniq_biz_content_pin (biz_content, pin)
)
ENGINE = InnoDB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8 COMMENT = '关注粉丝表';
2.1 Limit实现
由于同一个业务对象的所有粉丝都保存到一张数据库表中,对于分页查询列表接口,首先想到的就是用limit实现,对于粉丝数量很少的关注对象,查询接口性能还不错。但是随着关注对象的粉丝数量越来越多,接口查询性能就会越来越慢。后来经过接口压测,当业务对象粉丝列表数量达到几十万级别的时候,查询页码数量越大,查询耗时越多。limit深分页为什么会变慢?这就和sql的执行计划有关了,limit语句会先扫描offset+n行,然后再丢弃掉前offset行,返回后n行数据。也就是说limit 100000,10
,就会扫描100010行,而limit 0,10
,只扫描10行。查询 sql 示例如下:
select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} order by id desc limit 10, 10;
方案优点:实现简单,支持跳页查询。
方案缺点:数据量变大时,随着查询页码的深入,查询性能越来越差。
2.2 标签记录法
Limit深分页问题的本质原因就是:偏移量(offset)越大,mysql就会扫描越多的行,然后再抛弃掉,这样就导致查询性能的下降。所以可以采用标签记录法,就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。具体做法方式是,查询粉丝列表中按照自增主键ID倒序查询,查询结果中返回主键ID,然后查询入参中增加maxId参数,该参数需要透传上一次请求粉丝列表中最后一条记录主键ID,第一次查询时可以为空,但是需要查询下一页时就必传。最后根据查询时返回的行数是否等于 10 来判断整个查询是否可以结束。优化后的查询sql参考如下:
select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} and id < #{lastId} order by id desc limit 10;
方案优点:避免了数据量变大时,页码查询深入的性能下降问题;经过接口压测,千万级数据量时,前 N-1页查询耗时可以控制在几十毫秒内。 方案缺点:只能支持按照页码顺序查询,不支持跳页,而且仅能保证前 N-1 页的查询性能;如果最后一页的表中行数量不满 10 条时,引擎不知道何时终止查询,只能遍历全表,所以当表中数据量很大时,还是会出现超时情况。
2.3 区间限制法
select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} and id < #{lastId} and id >={minId} order by id desc limit 10;
select min(id) from follow_fans_1 where biz_content = #{bizContent}
由于表中数据量太大,每个表中总数据量都是上亿级别,导致第一步查询 minId就直接超时了,根本没有机会去执行第二步。但是考虑到上一个查询方案只有最后一页才会查询超时,前N-1页查询根本用不到 minId 作为区间限制。所以当表中数据量很大时,通常从第一页到最后一页查询之间会存在一定的时间差。就可以正好去利用这个时间差去异步查询minId,然后将查询出来的minId存储到缓存中,考虑到这个 minId 可能会被删除,可以设置一定的过期时间。最后优化后的查询流程如下:
1.调用查询粉丝列表方法时首先查询缓存minId;
2.如果缓存minId 为空,则创建异步任务去执行select min(id) 查询表中的 minId,然后回写缓存,该异步任务执行时间可能会很长,可以单独设置超时时间;
方案优点:避免了数据量变大时,页码查询深入的性能下降问题;经过接口压测,千万级数据量时,从第一页到最后一页都控制在几十毫秒内。
方案缺点:只能支持按照页码顺序和主键ID倒序查询,不支持跳页查询,并且还需要依赖大数据平台离线计算和额外的缓存来存储 minId。
03
对SQL优化治理的思考
理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。
3.1 查询条件一定要有索引
聚簇索引 (clustered index):聚簇索引的叶子节点存储行记录,InnoDB必须要有且只有一个聚簇索引:
1.如果表定义了主键,则主键索引就是聚簇索引;
2.如果没有定义主键,则第一个非空的唯一索引列是聚簇索引;
3.2 正确使用索引,防止索引失效
可以参考以下几点索引原则:
1.最左前缀匹配原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如 a=1 and b=2 and c>3 and d=4 ,如果建立了(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a、b、d的顺序可以任意调整。
2.=和in可以乱序,比如 a=1 and b=2 and c=3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮助优化成索引可以识别的形式。
3.尽量选择区分度高德列作为索引,区分度公式count(distinct col)/count(*),表示字段不重复的比例。
4.索引列不能使用函数或参与计算,不能进行类型转换,否则索引会失效。
3.3 减少查询字段,避免回表查询
回表查询就是先定位主键值,在根据主键值定位行记录,需要扫描两遍索引。解决方案:只需要在一颗索引树上能够获取SQL所需要的所有列数据,则无需回表查询,速度更快。可以将要查询的字段,建立到联合索引里去,这就是索引覆盖。查询sql在进行explain解析时,Extra字段为Using Index时,则触发索引覆盖。没有触发索引覆盖,发生了回表查询时,Extra字段为Using Index condition。
04 总结
理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目
本文通过结合实际系统案例,详细介绍了分页查询的优化历程,一步步从最简单的limit分页实现,到最后满足千万级表数据的分页查询探索实现,并介绍每种技术方案的优缺点,希望可以帮助读者去选择适合自己的技术方案。
LangChain:打造自己的LLM应用
移动端APP组件化架构实践
JaCoCo助您毁灭线上僵尸代码
求分享
求点赞
求在看